Semantic navigation is necessary to deploy mobile robots in uncontrolled environments like our homes, schools, and hospitals. Many learning-based approaches have been proposed in response to the lack of semantic understanding of the classical pipeline for spatial navigation, which builds a geometric map using depth sensors and plans to reach point goals. Broadly, end-to-end learning approaches reactively map sensor inputs to actions with deep neural networks, while modular learning approaches enrich the classical pipeline with learning-based semantic sensing and exploration. But learned visual navigation policies have predominantly been evaluated in simulation. How well do different classes of methods work on a robot? We present a large-scale empirical study of semantic visual navigation methods comparing representative methods from classical, modular, and end-to-end learning approaches across six homes with no prior experience, maps, or instrumentation. We find that modular learning works well in the real world, attaining a 90% success rate. In contrast, end-to-end learning does not, dropping from 77% simulation to 23% real-world success rate due to a large image domain gap between simulation and reality. For practitioners, we show that modular learning is a reliable approach to navigate to objects: modularity and abstraction in policy design enable Sim-to-Real transfer. For researchers, we identify two key issues that prevent today's simulators from being reliable evaluation benchmarks - (A) a large Sim-to-Real gap in images and (B) a disconnect between simulation and real-world error modes - and propose concrete steps forward.
translated by 谷歌翻译
We present the Habitat-Matterport 3D Semantics (HM3DSEM) dataset. HM3DSEM is the largest dataset of 3D real-world spaces with densely annotated semantics that is currently available to the academic community. It consists of 142,646 object instance annotations across 216 3D spaces and 3,100 rooms within those spaces. The scale, quality, and diversity of object annotations far exceed those of prior datasets. A key difference setting apart HM3DSEM from other datasets is the use of texture information to annotate pixel-accurate object boundaries. We demonstrate the effectiveness of HM3DSEM dataset for the Object Goal Navigation task using different methods. Policies trained using HM3DSEM perform outperform those trained on prior datasets. Introduction of HM3DSEM in the Habitat ObjectNav Challenge lead to an increase in participation from 400 submissions in 2021 to 1022 submissions in 2022.
translated by 谷歌翻译
已经引入了平均野外游戏(MFG),以有效地近似战略代理人。最近,MFG中学习平衡的问题已经获得了动力,尤其是使用无模型增强学习(RL)方法。使用RL进一步扩展的一个限制因素是,解决MFG的现有算法需要混合近似数量的策略或$ Q $价值。在非线性函数近似的情况下,这远非微不足道的属性,例如,例如神经网络。我们建议解决这一缺点的两种方法。第一个从历史数据蒸馏到神经网络的混合策略,将其应用于虚拟游戏算法。第二种是基于正规化的在线混合方法,不需要记忆历史数据或以前的估计。它用于扩展在线镜下降。我们从数值上证明,这些方法有效地可以使用深RL算法来求解各种MFG。此外,我们表明这些方法的表现优于文献中的SOTA基准。
translated by 谷歌翻译